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SUMMARY

Several issues related to the calculation of flow sensitivities and the solution of flow optimization
problems are considered. For the latter, one-shot Lagrange multiplier methods are presented, as well as
sensitivity- and adjoint-based iterative algorithms. A sample application of each method to a specific flow
optimization problem is provided. Then some difficulties associated with the practical implementation of
the methods are discussed. Particular emphasis is placed on the effect of flow discontinuities on
approximate sensitivities and adjoints. A discussion of these issues is given in the context of the Reimann
problem for which exact information is known. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As in any optimization setting, for a flow control or optimization problem we have the
following ingredients:

� state variables: f

� controls or design parameters: g
� constraints, e.g. state equations: F(f, g)=0
� objective functional: J(f, g)

which are necessary to pose the optimization problem

minimize J(f, g) subject to F(f, g)=0. (1)

In this paper, various issues concerned with the solution of such problems are discussed in the
fluid dynamics setting. Of course, by now, there is a vast amount of literature devoted to
solving such problems; no attempt is made at citing any here since we are not concerned with
advancing any particular methodology, but rather we are interested in pointing out various
issues that are common to most, if not all, approaches.

Three methods for solving problem (1) are considered. The first method is a Lagrange
multiplier or adjoint equation method, sometimes also referred to as an all-at-once or one-shot
method, which is defined as follows: solve the coupled system

F(f, g)=0, l*
(F
(f

= −
(J

(f
and l*

(F
(g

= −
(J

(g
. (2)
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for the state variable f, control g, and adjoint, costate or Lagrange multiplier variable l. The
first equation is the state equation, the second is referred to as the adjoint equation, and the
third as the optimality condition. The coupled system of three equations is referred to as the
optimality system.

The second method for solving (1) is an adjoint-based iterati6e algorithm, which is defined as
follows:

1. guess g :
2. determine f(g) from F(f, g)=0;
3. determine the adjoint 6ariable l from l*((F/(f)= −(J/(f ;
4. determine dJ/dg=(J/(g+l*((F/(g);
5. use dJ/dg to determine a new g ;
6. repeat until satisfied.

The third method for solving (1) is a sensiti6ity-based iterati6e algorithm, which is defined
as follows:

1. guess g ;
2. determine f(g) from F(f, g)=0;
3. determine the sensitivity df/dg from ((F/(f)(df/dg)= −(F/(g ;
4. determine dJ/dg=(J/(g+ ((J/(f)(df/dg);
5. use dJ/dg to determine a new g ;
6. repeat until satisfied.

To implement the second and third methods, start with an existing simulation code, i.e.
one that solves for an approximation to f for given g, then build in a capability to
compute sensitivities and/or adjoints and a capability to compute dJ/dg, then apply a
‘good’ optimization algorithm to update g, and then grind away and solve problems! To
implement the first method, again start with an existing simulation code and then build in
the capability to solve it, as a coupled system, with the other two equations in (2).

In the setting of fluids problems, the ingredients in flow control problems can take the
form of constraints, such as the potential flow equations, the Euler equations, the Navier–
Stokes equations, equations for reacting flows, etc. Example controls are the body force, the
velocity on the boundary, the initial velocity, the shape of domain, heat or concentration
fluxes, etc. Example objecti6es are drag minimization, lift enhancement, velocity matching,
temperature matching, enhancing mixing, etc. In the next three sections, examples of each
of these approaches are presented. Some difficulties that arise in the practical implementa-
tion of algorithms for flow control and optimization, and in the determination of sensitivi-
ties and adjoints, are then discussed.

2. EXAMPLE FOR THE COUPLED ADJOINT EQUATION METHOD

As an example of the application of the coupled adjoint equation or Lagrange multiplier
method, the suppression of instabilities in boundary layer flows by injection/suction control and
stress matching [1] is considered.

The state equations. i.e. the constraints, are given by the Navier–Stokes system for the
velocity components u and 6 and the pressure p :
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along with the initial and boundary data
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(u, 6)�t=0= (u0, 60) in V,

(u, 6)�Ga
=
!(g1, g2) in (T0, T1)

(0, 0) in (0, T0) and (T1, T)
,

(u, 6)�Gi
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u �Ge
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(y
)
Ge

=P�.
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See Figure 1 for a sketch of the problem configuration.
The control 6ariables are g1 and g2, i.e. the velocity components along a section Ga of the

wall. Thus, Ga is the injection/suction orifice along the wall and (T0, T1) is the time interval
over which control is effected. All other data is assumed to be given. It is require that
g1�t=T 0

=g10(x) and g2�t=T 0
=g20(x) for given functions g10(x) and g20(x). No outflow

conditions are specified on G0; a ‘buffer zone’ technique is used near the outflow [2].
The objecti6e functional is given by

J(u, 6, p, g1, g2)
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)2
+ �g2�2� dG dt.

The first two terms try to match the tangential and normal stresses along the boundary
segment Gs and over the time interval (Ta, Tb) to given functions ts(t, x) and tn(t, x)
respectively. The last two terms are penalty terms that limit the size and time oscillations of the
control functions g1 and g2. The constants a1, a2, b1 and b2 are chosen to adjust the relative
importance of the four terms in J( · ).

Figure 1. The computational domain for the boundary layer instability suppression problem.
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The optimization problem is then defined by:

given ts, tn, Ga, Gs, T0, T0, Ta and Tb, find u, 6, p, g1 and g2 such that the functional J(u, 6, p, g1, g2)
is minimized subject to (u, 6, p, g1, g2) satisfying the Navier–Stokes system.

The optimality system is given by the Navier–Stokes system (3)–(6), the adjoint system and
the optimality conditions. The adjoint system for the adjoint velocity (û, 6̂) and the adjoint
pressure p̂ is given by
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p̂+2n
(6̂

(y
+66̂=0 on (0, T)×Ge.

Note that the adjoint equations are properly posed backwards-in-time so that terminal
conditions (instead of initial conditions) are appropriate. Furthermore, the inflow boundary
for the adjoint equations is the outflow boundary for the Navier–Stokes systems and
conversely. No boundary conditions are imposed on the adjoint variables (û, 6̂, p̂) at its
‘outflow’ boundary Gi ; a ‘buffer zone’ technique is used near there.

The optimality conditions are given by

Í
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(û
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on (T0, T1)×Ga,

g1�t=T 0
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(g1

(t
)
t=T 1

=0 on Ga,
(11)
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These are two-point boundary value problems in time that hold at each point in Ga.
If one solves the coupled system (3)–(12) all-at-once, the optimal solution may be obtained

without iteration. However, this is a formidable system, involving more than twice the
unknowns of the Navier–Stokes system itself. Note that in (11)–(12), one needs to solve
differential equations along the boundary. Even more onerous, the adjoint system (7)–(10) is
well-posed as a backward in time problem with terminal conditions (at t=T) instead of initial
conditions. As a result, solving this system together with the Navier–Stokes system (3)–(6)
means that one cannot march in time, i.e. one needs to solve in space–time in a coupled
manner. This is, of course, impossible in practice. Thus, in practice, the optimality system
(3)–(12) is solved by a method such as that of Section 3 [1], or by solving local-in-time
quasi-optimal control problems [3]. Extensive computational results for this problem may be
found elsewhere [1].

3. EXAMPLE OF AN ADJOINT-BASED ITERATIVE ALGORITHM

As an example of the application of an adjoint-based iterative method, a 6elocity matching by
body force control for the Na6ier–Stokes equations [4] is considered.

The constraint equations are the Navier–Stokes equations

(u
(t

−nDu+ (u ·9)u+9p= f and 9 ·u=0 in V× (0, T),

u=0 on G× (0, T), and u�t=0=u0 in V.

The control (in this academic example) is the body force f and the objecti6e functional is given
by

J(u)=
a

2
& T

0

&
V

�u−U�2 dV dt+
g

2
&

V
�u(T)−U(T)�2 dV.

The constants a and g are chosen to adjust the relative importance of the two terms in J( · ).
The inclusion of the second term has been found to be useful in achieving good matching near
the final time t=T. The optimization problem is given by:

given T, V, u0 and U, minimize J(u(f)) over f subject to u and f satisfying the Navier–Stokes
system.

Thus, the goal of the optimization is to match the flow velocity u to a given velocity field U.
In practice, one solves a discretized version of this problem; here, finite element spatial

discretizations are considered. First, subdivide (0, T) into N intervals of length Dt and then
introduce stable and optimally accurate finite element spaces Xh and Sh for the velocity and
pressure respectively, satisfying the boundary condition u=0. A finite element space Yh is
chosen for the control, which may be chosen to be essentially the same as Xh. The approximate
solution is denoted by {(uh

n, ph
n, fh

n)}n=1
N . The discrete functional is given by

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 53–78 (1999)



M.D. GUNZBURGER58

Jh
N=

aDt
2

%
N

n=1

uh
n−Un2+

g

2
uh

N−UN2+
bDt

2
%
N

n=1

fh
n2,

where it has been regularized through the addition of a penalty term with penalty parameter
b. The discrete constraint equations are the fully discrete Navier–Stokes system: for n=
1, 2, . . . , N,

1
Dt

(uh
n, wh)+a(uh

n, wh)+c(uh
n, uh

n, wh)+b(wh, ph
n)= (fh

n, wh)+
1
Dt

(uh
n−1, wh) Öwh�Xh,

b(wn, rh)=0 Örh�Sh,

where wh
0=�Xh

w0 and �Xh
is an appropriate projection of the initial data onto the velocity

finite element space. The discrete optimization problem is then defined by:

given T, V, u0 and U, minimize Jh
N(uh

n(fh
n)) with respect to fh

n subject to uh
n and fh

n satisfying the
discrete Navier–Stokes system.

In order evaluate the gradient of the functional, we introduce the discrete adjoint system:
starting with mh

N= − (g/b)(uh
N−UN), for n=N, N−1, . . . , 1,

1
Dt

(mh
n−1, vh)+a(vh, mh

n−1)+c(vh, uh
n, mh

n−1)+c(uh
n, vh, mh

n−1)+b(vh, ph
n−1)

=
1
Dt

(mh
n, vh)+a(uh

n−Un, vh), Övh�Xh,

b(mh
n−1, sh)=0 Ösh�Sh.

In this example, a simple gradient method is chosen for the solution of the optimiziation
problem. The method is given as follows:

(a) initialization:
(i) choose a tolerance t and fh

n(0) and set k=0 and e=1;
(ii) solve for uh

n(0) from the discrete Navier–Stokes equations with right-hand-side fh(0)
(iii) evaluate Jh

N(0)=Jh
N(uh

n(0), fh
n(0));

(b) main loop:
(iv) set k=k+1;
(v) solve for mh

n(k) from the adjoint equations using uh
n(k−1) for uh

n;
(vi) set fh

n(k)= fh
n(k−1)−e(bfh

n(k−1)+mn
h(k));

(vii) solve for uh
n(k) from the discrete Navier–Stokes equations with right-hand-side

fh
n(k);

(viii) evaluate Jh
N(k)=Jh

N(uh
n(k), fh

n(k));
(ix) if Jh

N(k)\Jh
N(k−1), set e=0.5e and go to (vi); otherwise continue;

(x) if �Jh
N(k)−Jh

N(k−1)�/�Jh
N(k)�\t, set e=1.5e and go to (iv); otherwise stop.

The bulk of the computational costs are found in the backward-in-time solution of the discrete
adjoint system in step (v) and the forward-in-time solution of the discrete Navier–Stokes
system in step (vii). Step (vi) is a simple update in the direction of the negative gradient of the
functional, which in this example is given by fh

n+ (1/b)mh
n−1.
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Figure 2. Error u−U (left and control norm f (right) vs. time.

3.1. A computational example

The algorithm described in the previous section was implemented on the following test
example. The flow domain is the unit square V= (0, 1)× (0, 1). It is assumed that the time
interval [0, 1] is divided in equal intervals of time Dt=1/N. The Taylor–Hood pair of finite
element spaces are used on a rectangular mesh, i.e. the finite element spaces are chosen to be
continuous piecewise biquadratic polynomials for the velocity and continuous piecewise
bilinear polynomials for the pressure. The mesh size is h and calculations with varying mesh
sizes have been performed to show convergence. All the vector plots are normalized by the
maximum values in order to enhance the clarity of the plots.

The target velocity U for this test is a solution of the Stokes system with zero initial velocity
and body force

F(x, y)=
�a(0.4, x, y)−e−2t a(0.6, x, y)

b(0.4, x, y)−e−2t b(0.6, x, y)
�

,

where

a(z, x, y)=10
dc(z, x, y)

dy
, b(z, x, y)= −10

dc(z, x, y)
dx

,

and

c(z, x, y)= (1−cos(4pzx))(1−x)2(1−cos(4pzy))(1−y)2.

The resulting target velocity is a superposition of two flows: a vortex at the centre of the
domain with large radius and another vortex with small radius centred in the lower-left corner.
Each of these flows prevails at different times of the evolution. We set a=1, b= 1

5000, g=0.5,
Dt=0.025 and h= 1

16. The initial velocity for the controlled flow is

u0(x, y)=
� (cos(2px)−1) sin(2py)

− (cos(2py)−1) sin(2px)
�

.

Figure 2 shows the error u−U between the controlled flow u and the target flow U and the
norm of the control f. It can be seen that the error reduces. The evolution is given in Figure
3. The target flow is on the left and the controlled flow is on the right. It can be seen that by
t=0.5, we reach a near perfect match. For times later than that, the plots of the controlled
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Figure 3. Desired (left) and controlled (right) velocity fields at time levels t=0, 0.1, 0.3, 04, 0.5.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 53–78 (1999)



SENSITIVITIES, ADJOINTS AND FLOW OPTIMIZATION 61

flow and the target flow are indistinguishable; thus, we do not present them here. From Figure
2, we see that the control works hard at the beginning in order to steer the controlled flow to
the target flow and subsequently remains flat. Near t=T, the control strength again increases
in order to reduce the error near the final time.

4. EXAMPLE OF A SENSITIVITY-BASED ITERATIVE ALGORITHM

As an example of the application of a sensitivity-based iterative method, a shape optimization
problem for steady Euler flows, i.e. an optimal design problem [5–8], is considered.

The constraint equations are the two-dimensional steady Euler equations that are written in
the form

(F
(x

+
(G
(y

=0 in V,

where V denotes a two-dimensional flow domain. F(Q) and G(Q) are flux functions, and Q is
a vector of conservative variables, e.g. Q= (r, m1, m2, e)T. The inflow condition

Q=Ã
Ã

Ã

Á

Ä

b

a0

0
s

Ã
Ã

Ã

Â

Å

on G0

and the no-penetration condition

m1n1+m2n2=0 on G,

are imposed, where G denotes an obstacle in the flow and G0 the inflow boundary.
The obstacle G is determined by a finite number of design parameters a1, . . . , aK, through

the relation

y=F(x ; a1, . . . , aK).

In terms of this representation for G, the no-penetration condition can be written as

−m1(x, y=F(x ; a1, . . . , aK); a1, . . . , aK)
(F
(x

(x ; a1, . . . , aK)

+m2(x, y=F(x ; a1, . . . , aK); a1, . . . , aK)=0.

The shape design parameters enter into this condition in two ways: the components of the
momentum depend on the design parameters and the condition is applied on the obstacle G,
whose shape depends explicitly on the design parameters. It is important to keep track of both
types of dependencies when one is interested in sensitivities.

The objecti6e functional is introduced

J(Q)=
1
2
&

G1

�Q−Q. �2 dG,

where G1 denotes a part of the boundary of the flow domain, e.g. the outflow boundary, and
Q. is a given flow field.
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The optimization problem is given by:

given Q. and G1, find parameters ak, k=0, . . . , K, so that the functional J(Q) is minimized, subject
to the flow field Q satisfying the Euler equations plus boundary conditions.

Thus, the goal of the optimization is to have the flow field match a given flow field Q. along
G1 as well as possible. The controls are the parameters that determine the shape of G, the
obstacle and the inflow x component of the momentum.

4.1. Sensiti6ity equations

For k=1, . . . , K, let Qk=(Q/(ak denote the sensitivity with respect to the shape design
parameters ak If we formally differentiate the Euler equations with respect to ak we obtain

(

(x
�(F
(Q

·Qk

�
+
(

(y
�(G
(Q

·Qk

�
=0, k=1, . . . , K.

The inflow conditions and inflow boundary are independent of ak for k]1, so that the
derivative of the inflow condition with respect to ak is given by

Qk=0, k=1, . . . , K, on G0.

The derivative of the no-penetration condition with respect to ak is given by

− (m1)k

(F
(x

+ (m2)k=
�(m1

(y
(F
(x

−
(m2

(y
�
Fk+m1

(Fk

(x
, k=1, . . . , K,

on y=F(x ; a1, . . . , aK),

where, for each k=1, . . . , K,

(m1)k=
(m1

(ak

, (m2)k=
(m2

(ak

and Fk=
(F
(ak

.

If the state Q is given, then the system for the sensitivity equations is linear in Qk. The
left-hand-side operators are independent of k ; the only dependence on k is through the
appearance of Fk on the right-hand-side of the differentiated no-penetration condition. This
means that, if Q is given, a discretization of the sensitivity system will yield a linear system for
an approximation of Qk having a coefficient matrix that is independent of k and is therefore
the same for all sensitivities Qk, k=1, . . . , K. However, for each k, the right-hand-side would
be different.

The inflow x-momentum component data a0 is a 6alue parameter that is also at our disposal
in the optimization process. Let Q0= (r0, (m0)1, (m0)2, e0)T=(Q0/(a0, i.e. the sensitivity with
respect to the inflow x-momentum component. Differentiating the Euler system with respect to
a0 yields the sensitivity system

(

(x
�(F
(Q

·Q0
�

+
(

(y
�(G
(Q

·Q0
�

=0, k=1, . . . , K,

Q0= (0, 1, 0, 0)T on G0,

(m0)1n1+ (m0)2n2=0 on G.

Let us compare the shape and value sensitivity equations. The differential equations for both
the shape and value sensitivities are the same. The forms of the corresponding boundary
conditions, i.e. the left-hand-sides, are also the same. What is different is the data in the
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boundary conditions. Note the appearance of the derivatives (m1/(y and (m2/(y, i.e. deriva-
tives of the flow field evaluated on the boundary segment G1 on the right-hand-side of the
shape sensitivity system. This is generic to sensitivity equations in shape optimization problems
and leads to inaccuracies. Note that the right-hand-sides of the value sensitivity system do not
involve derivatives of the flow field.

4.2. The optimization algorithm

The derivative of the functional with respect to a parameter ak is given by

(J

(ak

=
&

G1

�
(r− r̂)

(r

(ak

+ (m1−m̂1)
(m1

(ak

+ (m2−m̂2)
(m2

(ak

+ (e− ê)
(e
(ak

�
dG,

k=0, . . . , K.

The flow sensitivities (r/(ak, (m1/(ak, (m2/(ak and (e/(ak are determined by solving the
appropriate sensitivity equations.

The optimization algorithm employed is given as follows:

� Start with an initial guess a0
(0), a1

(0), . . . , aK
(0) for the design parameters;

� For n=0, 1, 2, . . . ,
1. solve the Euler system to obtain the corresponding flow field Q(n);
2. solve the sensitivity systems to obtain the sensitivities Q0

(n) and Qk
(n), k=1, . . . , K ;

3. Compute (dJ/dak)(f (n), g (n)), k=0, . . . , K ;
4. use the results of steps 1, 2 and 3 to compute steps dak

(n), k=0, . . . , K ;
5. set ak

(n+1)=ak
(n)+dak

(n), k=0, . . . , K ;
6. test for convergence and either stop or return to step 1.

Once one chooses an optimization method for effecting the update of step 4, the optimization
algorithm is completely defined. We have found a BFGS-quasi-Newton method [9] to be
particularly effective in this regard.

Figure 4. Body for the reference flow (top) and a candidate body for the optimal flow (bottom).
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Figure 5. Pressure contours for target flow (left), initial flow for the optimization (middle), and optimal flow (right).

4.3. A computational example

A computational example of the use of sensitivities in Euler flow optimization [5–8] is now
given. Consider the supersonic flow around a body as depicted in the top sketch of Figure 4.
For a given body shape and free stream Mach number, this flow is used, which of course, is
determined computationally, as the reference flow Q. . In the objective functional G1, the part
of the boundary along which we wish to match the flow to the given flow Q. , is the exit plane
as indicated in Figure 4. The goal of the optimization is to try to match the reference flow
along the exit plane with the flow around a body half as long as the reference body, as depicted
in the bottom sketch of Figure 4. The thickness of the body at the exit plane is the same as
that of the reference body. The design parameters are the free stream Mach number and two
Bezier parameters that determine the shape of the body. The optimization is initiated with a
body that is simply the squeezed body of the reference flow, i.e. if y= f(x−L) denotes the
body for the reference flow, where L denotes the position of the exit plane, then the initial
body for the optimization is given by y= f(2(x−L)). The free stream Mach number for the
reference flow and the initial flow is 2. The body is determined by four Bezier parameters, two
of which are fixed so that the body has the correct intercepts along the horizontal axis and the
exit plane. The two free Bezier parameters are initially set to 0.2 and 0.3; although these
numbers may not mean anything to the reader, we give them to show the changes that occur
through the optimization process. The flow is computed using Aerosoft Corporation UGASP
unstructured mesh code, which is based on [10]. Sensitivities were computed by a modification
of the UGASP code that approximately solves the continuous sensitivity equations.

In Figure 5, the pressure contours for the target flow, the initial flow for the optimization,
and the optimal flow are given. The final values of the design parameters are: free stream
Mach number 1.98; Bezier parameters 0.415 and 0.279. It can be seen that at least one of these
parameters changed appreciable during the optimization process, i.e. the starting guesses for
the parameters in the optimization were not all ‘close’ to their optimal values. From Figure 5
it can be seen that the shock position for the initial flow is incorrect; the optimal flow has the
shock in the right place. The correct placement of the shock at the exit plane is accomplished
by a body half the length of the reference body by making the optimal body blunter. This is
done automatically by the optimization process. The matching of the continuous portions of
the target and optimal flows along the exit plane is not perfect due to the small number of
parameters used in the optimization.
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In Figure 6, a graph of the final x velocity sensitivity (determined by two different
approaches) plotted along the exit plane is given. Note, for future reference, the large spike in
the sensitivity; this spike is located at the intersection of the shock wave and the exit plane.

5. SOME DIFFICULTIES IN PRACTICAL FLOW OPTIMIZATION

There are many difficulties that one encounters in the practical implementation of flow control
and optimization algorithms. Among these are the appearance of spurious (numerical) local
minima [11,12]. Perhaps foremost among the difficulties is the need to decide between the
differentiate-then-discretize or the discretize-then-differentiate approaches. In the former case,
one derives sensitivity or adjoint equations at the continuous level, and then discretizes the
result to obtain approximate sensitivity or adjoint equations; in the latter case, one discretes
the flow equations first and then differentiates these to obtain approximate sensitivity or
adjoint equations. The two sets of approximate sensitivity or adjoint equations are not in
general the same. The relative merits of the two approaches are discussed at length elsewhere,
so it will be dwelled upon here. Instead, difficulties associated with inaccurate data in
boundary conditions for shape sensitivities are briefly discussed, then difficulties that arise
from discontinuities in the flow field will be discussed. Although the ensuing discussion is in
the context of sensitivities, almost everything said holds just as well for adjoints.

5.1. Inaccurate data in boundary conditions

Consider the Navier–Stokes problem

−nDu+u ·9u+9p= f and 9 ·u=0 in V,

u=0 on G1={y=bf(x)}, and u=ag on G2.

Figure 6. Sensitivity of the x component of the velocity at the exit plane computed by finite difference quotients (—)
and by the sensitivity equation method (---).
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The part of the boundary G2 is fixed and the boundary data contains a parameter a that is
at our disposal; another part of the boundary G1 is determined by the equation y=bf(x)
so that its specification contains a parameter b. Thus, a is an example of a 6alue design
parameter or control and b is an example of a shape design parameter or control.

The sensitivities are denoted by

ua=
(u
(a

, pa=
(p
(a

, ub=
(u
(b

and pb=
(p
(b

.

The equations for the sensitivities with respect to 6al6e parameter a are

−nDua+ua ·9u+u ·9ua+9pa=0 and 9 ·ua=0 in V;

ua=0 on G1 and ua=g on G2. (13)

The equations for the sensitivities with respect to shape parameter, b are

−nDub+ub ·9u+u ·9ub+9pb=0 and 9 ·ub=0 in V;

ub= −f(x)
(u
(y

on G1 and ub=0 on G2. (14)

For the system (14), note that we have that u=u(x, y ; a, b) so that we have
u(x, bf(x); a, b)=0 on G1. Note that along G1, u depends on b in two ways. If we
differentiate with respect to b, then the chain rule yields the boundary condition along G1

in (14).
The operators on the left-hand-side of the systems (13) and (14) are identical. The only

difference between the two systems is the data on the right-hand-sides. For the first system,
the data is given exclusively in terms of the data for the flow system. However, for the
second system, the data depends additionally on a derivative of the flow solution, specifi-
cally (u/(y evaluated along the boundary segment G1. In practice, where one deals with
discrete equations and approximate solutions, there are three sources of error in the right-
hand-side of the second system: first, only approximations of the flow components are
known; second, approximate differentiation rules must be used to approximate the deri-
vatives of the flow components; and third, the approximate derivatives must be evaluated
at the boundary, e.g. only one-sided difference quotients can be used to approximate
derivatives. These difficulties arise in all sensitivity calculations involving shape parameters
and arise in both the discretize-then-differentiate and differentiate-then-discretize ap-
proaches.

5.2. Discontinuous flows, e.g. shock wa6es

One cannot differentiate the flow equations across a shock wave to obtain sensitivity or
adjoint equations. A naive determination of sensitivity equations by both the discretize-
then-differentiate and differentiate-then-discretize approaches yield sensitivities containing
spikes near the shock location (see Figure 6). These spikes are approximations to d func-
tions. Despite these spikes, naively computed sensitivities do rather well in an optimization
setting. However, improved performance of optimzation algorithms may be achievable if
one could compute one-sided sensitivities having no spikes. This difficulty is discussed at
greater length in the next section in the context of the Reimann problem for which an
exact solution is known.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 53–78 (1999)



SENSITIVITIES, ADJOINTS AND FLOW OPTIMIZATION 67

6. SENSITIVITIES FOR THE REIMANN PROBLEM

In order to discuss in more detail the difficulties that arise in sensitivity calculations for
discontinuous flow, a setting for which we can determine the sensitivities exactly, namely the
sensitivity of Riemann flow with respect to the initial high pressure p4, is chosen. The
sensitivities are calculated by using finite difference quotients of the discrete flow solution,
automatic differentiation of the discrete flow equations, both of which are discretize-then-
differentiate approaches, and the sensitivity equation method in which one differentiates the
continuous flow equations before differentiating them to obtain approximate sensitivity
equations. The difficulties using three numerical schemes of Lax–Wendroff, Godunov and
Roe-type to calculate the flow are illustrated; these methods have well-known properties with
respect to flow fidelity, e.g. shock resolution.

The finite difference quotient approximation of the sensitivity with respect to p4 is given by

(Qh)p 4
:

Qh(p4+Dp4)−Qh(p4)
Dp4

;

we use Dp4=0.1 in the computational experiments. The automatic differentiation sensitivity is
calculated using the software package ADIFOR [13–15] on the discrete flow equations. The
sensitivity equation method differentiates the continuous Euler equations and initial conditions
with respect to p4 to derive a new set of continuous equations, the sensitivity equations that
can then be solved using one of the numerical methods.

The governing equations are the one-dimensional Euler equations

Qt+F(Q)x=0,

where the conservative variables Q and flux functions F(Q) are respectively given by

Q(x t)=Ã
Á

Ä

r

rm
e
Ã
Â

Å
and F(Q)=Ã

Á

Ä

m
p+ (m2/r)

(m/r)(e+p)
Ã
Â

Å
.

The initial condition is

Q(x, 0)=Q4 for xBc, and Q(x, 0)=Q1 for x\c,

which represent two states at rest with different pressures and densities separate by a
diaphragm located at x=c ; it is assumed that the state on the left is at higher pressure, i.e.
p4\p1. The primitive variables U= (p, r, u)T are related to the conservative variables by
m=ru and e=p/(g−1)+ru2.

The exact solution of the Riemann problem is given by

U=U4 for xB−a4t+c,

U=UR for −a4t+c5x5
�g+1

2
u3−a4

�
t+c,

U=U3 for
�g+1

2
u3−a4

�
t+c5x5u2t+c,

U=U2 for u2t+cBxBa1
�g1−1

2g1

+
g1+1

2g1

p2

p1

�1/2

t+c,
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Figure 7. Exact solution of the one-dimensional Riemann problem at t=0.148.

U=U1 for a1
�g1−1

2g1

+
g1+1

2g1

p2

p1

�1/2

t+c5x,

where ai
2=gpi/ri, i=1 or 4, and p2 is given implicitly as the solution of

p4

p1

=
p2

p1

�
1−

(g−1)(a1/a4)(p2/p1−1)


2g 
2g+ (g+1)(p2/p1−1)

�−2g/(g−1)

. (15)

The remaining variables are given by

r2=r1

p2

p1

�
1+

g−1
g+2

p1

p2

�,�
1+

g−1
g+1

p2

p1

�
,

u2=u3=a1
�p2

p1

−1
�
2/g

�
(g+1)

p2

p1

+ (g−1)
�−1/2

,

r3=r4
�p3

p4

�1/g

, p3=p2,

pR=p4
�

1−
g−1

2
uR

a4

�2g/(g−1)

, rR=r4
�

1−
g−1

2
uR

a4

�2/(g−1)

,

uR=
� u3−u4

[(g+1)/2]u3

��x−c
t

�
+

a4u3− (a4− [(g+1)/2]u3)u4

[(g+1)/2]u3

.

The solution has five distinct regions: left and right constant flow regions in which the
solutions are given by the high- and low-pressure initial states; two other constant flow regions
between the shock and the contact discontinuity and the contact discontinuity and the
rarefaction wave; and a rarefaction wave adjacent to the left high-pressure region (see Figure
7).

One cannot differentiate the flow (with respect to space, time or design parameters) across
the shock wave or the contact discontinuity. If one differentiates across these phenomena, d

functions result. Although the flow is continuous at the edges of the rarefaction weave, it is not
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differentiable there either. Differentiation across the edges of that wave results in jump
discontinuities in the sensitivities. However, the flow solution can be differentiated within each
of the five regions.

6.1. Exact flow sensiti6ities in continuous regions of the flow

The sensitivity of the flow U is denoted with respect to p4 by

U%=Ã
Ã

Ã

Ã

Ã

Á

Ä

(p
(p4

(r

(p4

(u
(p4

Ã
Ã

Ã

Ã

Ã

Â

Å

=Ã
Á

Ä

p %
r %

u %
Ã
Â

Å
.

Differentiation of the flow (in continuous regions) with respect to the design parameter p4

yields the exact sensitivities U%=U%4= (1, 0, 0)T in the high-pressure region U%=U%R in the
rarefaction wave, U%=U%3 in the region between the rarefaction wave and the contact
discontinuity, U%=U%2 in the region between the contact discontinuity and the shock wave, and
U%=U%1 in the low-pressure region. A linear equation for p %2 is found by differentiating the
implicit relation (15) for p2 with respect to p4. The other variables are given by explicit
formulae that are too complicated to list here. However, Figure 8 plots the exact sensitivities
of the flow with respect to p4 within the regions in which flow field is smooth. Note the jumps
occurring in the sensitivities at the shock, the contact discontinuity and the two edges of the
rarefaction wave.

Figure 8. Exact continuous sensitivity with respect to p4 at t=0.148.
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6.2. Continuous sensiti6ity equations

The continuous sensitivities are denoted by S= (r %, m %, e %)T, where

r %=
(r

(p4

, m %=
(m
(p4

and e %=
(e
(p4

.

The continuous equations for the sensitivity equations are derived by differentiating the flow
equations with respect to p4 to obtain

St+
(G(Q, S)
(x

=0,

where the sensitivity flux function G( · , · ) is given by

G(Q, S)=Ã
Ã

Ã

Ã

Ã

Á

Ä

m %

2mm %
r

−
m2

r2 r %+p %�m %
r

−
m
r2 r %

�
(e+P)+

�m
r

�
(e %+p %)

Ã
Ã

Ã

Ã

Ã

Â

Å

,

where m %=r %u+ru % and e %= [P %/(g−1)]+1
2r %u

2+ruu %. The initial conditions for the sensi-
tivity S are found by differentiating the initial conditions for the flow with respect to p4, i.e.

S(x, 0)=Ã
Á

Ä

0
0

1/(g−1)
Ã
Â

Å
for xBc, and S(x, 0)=0 for x\c.

The continuous sensitivity equation only holds inside each of the five regions wherein the
flow field is smooth. They do not hold across the shock wave, the contact discontinuity or even
at the two edges of the rarefaction wave, since the flux function F(Q) is non-differentiable at
these locations. It is important to note that the continuous sensitivity equations are linear,
hyperbolic equations with discontinuous coefficients.

The three numerical methods used in the simulations are:

– the two-step Lax–Wendroff finite difference with the post-processing artificial viscosity
term of Lapidus added to the approximate solution;

– the Godunov finite difference scheme, again with the post-processing artificial viscosity
term of Lapidus added to the approximate solution;

– a Roe-type scheme [16].

The Roe scheme for the sensitivity equations requires the development of a new numerical
scheme [5]. The non-conservation law form of the continuous sensitivity equations are

St+A(U)Sx= −
(G(Q, S)
(Q

Qx,

where A(U) is the same Jacobian as encountered in the flow equation. One can solve the
sensitivity equation by a ‘Strang splitting’ approach in which one alternates between solving
the homogeneous equation
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Figure 9. Comparison of three different sensitivity calculation methods using the Lax–Wendroff numerical scheme vs.
the exact sensitivity. (· · ·) ADIFOR sensitivity; (·-·) finite difference sensitivity; (---) sensitivity equation method

sensitivity; (—) exact sensitivity.

St+A(U)Sx=0,

and the equation

St= −
(G(Q, S)
(Q

Qx.

6.3. Computational results

For a specific value of the parameter p4, we calculate sensitivities for the Reimann problem
using finite difference quotients, ADIFOR, and the sensitivity equation method for each of
three numerical schemes described. For the finite difference quotient approach, both the flow
at value of the parameter p4 and at the perturbed value p4+Dp4 are solved using the same
numerical scheme and then the sensitivities are approximated by a finite difference quotient.
For the automatic differentiation sensitivities, the ADIFOR package is applied to the code of
each numerical scheme to derive new FORTRAN codes that will calculate both the flow
solution and the automatic differentiation flow sensitivity.

For Figures 9–11, the sensitivities are calculated using Dx=0.01 and Dt=0.001 in the
Lax–Wendroff, Godunov and Roe schemes respectively. The grid spacing can have an effect
on the accuracy of the sensitivity calculations and, of course, the flow solution calculation. To
show the effect of grid size, the Lax–Wendroff sensitivities are calculated for two coarser
meshes: the results are given in Figures 12 and 13 for which the grid spacing are (Dt=0.004,
Dx=0.04) and (Dt=0.002, Dx=0.02) respectively. Clearly, there is substantial agreement
between all three sensitivity calculation methods for all three numerical schemes. Therefore, the
method or numerical scheme used to calculate sensitivities may not be that important insofar
as accuracy is concerned and the easiest and cheapest method should be used. However, none
of the methods give good agreement with the exact sensitivities. Certainly, for all combinations
of sensitivity calculation method and numerical discretization scheme, the accuracy of the
computed sensitivities are nowhere near as good as that for the approximate flow field using
the same numerical method.
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Figure 10. Comparison of three different sensitivity calculation methods using the Godunov numerical scheme vs. the
exact sensitivity. (· · ·) ADIFOR sensitivity; (·-·) finite difference sensitivity; (---) sensitivity equation method sensitivity;

(—) exact sensitivity.

Shock waves, contact discontinuities, rarefaction waves and the grid spacing have a large
impact on the accuracy of the sensitivity calculations. All the sensitivity calculation methods
give virtually indistinguishable results for the medium and fine grids. Consider, for example,
Figures 9–11. In each of these figures, it is difficult to distinguish between the three different
methods except in the regions where large spikes occur. There are differences in the sensitivities
if one chooses different grid sizes or numerical method, but if the grid size and numerical
method remain fixed, there is little difference between the different sensitivity calculation
methods. For example, the sensitivities calculated using the Roe scheme on a fine grid, see

Figure 11. Comparison of three different sensitivity calculation methods using the Roe numerical scheme vs. the exact
sensitivity. (· · ·) ADIFOR sensitivity; (·-·) finite difference sensitivity; (---) sensitivity equation method sensitivity; (—)

exact sensitivity.
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Figure 12. Comparison of the three different sensitivity calculation methods using the Lax–Wendroff numerical
scheme on a coarse grid vs. the exact sensitivity. (· · ·) ADIFOR sensitivity; (·-·) finite difference sensitivity; (---)

sensitivity equation method sensitivity; (—) exact sensitivity.

Figure 11, are a better approximation to the exact sensitivities than the sensitivities calculated
using the Lax–Wendroff method on either a fine grid (Figure 9) or medium grid (Figure 13)
but each of the three sensitivity calculation methods yield almost identical results in each of the
above figures.

The results for the fine and medium grids are quite interesting; they are very close. This
implies that the inconsistencies in the different sensitivity methodologies arise mainly in the
area around the spikes and are negligible elsewhere. These spikes are due largely to errors in
the sensitivity approximation methods. Hence, it is reasonable to expect that if the spikes can

Figure 13. Comparison of the three different sensitivity calculation methods using the Lax–Wendroff numerical
scheme on a medium grid vs. the exact sensitivity. (· · ·) ADIFOR sensitivity; (·-·) finite difference sensitivity; (---)

sensitivity equation method sensitivity; (—) exact sensitivity.
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be eliminated, then the different sensitivity methodologies can become interchangeable in many
applications.

As far as the numerical methods are concerned, the Roe scheme does the best job of
approximating the exact continuous sensitivities followed by the Godunov scheme and the
Lax–Wendroff scheme. This is as expected, since the Roe scheme does the best job of
approximating the exact flow solution followed again by the Godunov and Lax–Wendroff
schemes. It is interesting to note that even though the approximate flow solution using the Roe
scheme on a fine grid is very close to the exact flow solution, the sensitivities calculated using
the Roe scheme on a fine grid are not very close to the exact continuous sensitivities in the region
between the shock wave and the contact discontinuity; see Figure 11. This is due largely to the
spikes arising at both the shock wave and the contact discontinuity.

The final observation is that all the different sensitivity calculation methods incurred problems
at the shock wave, the contact discontinuity, and even the rarefaction wave. At the shock wave
and contact discontinuity, large spikes arose as the methods attempted to approximate the d

function at that point. If the grid was coarse, then the spikes were small humps and much of
the flow sensitivity information was effectively lost. If the grid was refined, then the spikes
became thinner but grew in magnitude. The flow sensitivities of the rarefaction wave involve
jump discontinuities at both ends. In all the methods these jumps were not captured very
accurately unless the grid was refined and a better numerical scheme, such as the Roe scheme,
was used. An interesting thing is that the discontinuities in flow sensitivities are not captured
with the same accuracy as that for discontinuities in the flow solution, even when using
equivalent methods and grids.

6.4. Flow sensiti6ities and discontinuities

6.4.1. Flow sensiti6ities and shocks. Suppose that the flow is characterized by a single parameter
a ; then, in one dimension, the flow field may be viewed as a function of x, t and a, i.e.
Q=Q(x, t ; a). In a flow simulation, one would pick a particular value a0 for the parameter and
then proceed to determine Q as a function of x and t, i.e. Q(x, t ; a0). The location of the shock
wave is denoted by xs. In general, if the value of the parameter is changed, the location of the
shock wave changes so that the shock location is a function of the parameter, i.e. at least locally
we can write xs=xs(t ; a). See Figure 14 for a sketch at a particular instant of time. For a fixed
value of the parameter a=a0, the flow variable Q(x, t0; a0) is a discontinuous function of x,
and certainly cannot be differentiated with respect to x at xs(t0; a0). Likewise, if the value of
x is fixed at, say at x=x0, then for at least some x0, Q(x0, t0; a), viewed as a function of a,
is discontinuous and hence not differentiable with respect to a at xs(t0; a)=x0.

Flow sensitivity derivatives do not exist at shock waves in much the same way that spatial
and temporal flow derivatives do not exist at those locations. In the calculation of flow
sensitivities by all three numerical approaches, the presence of shock waves was ignored, e.g.
the same algorithm was applied at points in (x, t ; a) space where a shock wave is present as
was applied at points where the flow is smooth. As a result, approximate flow sensitivities with
large spikes at the shock were obtained; these spikes approximate the d function that the exact
flow sensitivities contain at that location.

To see how these spikes arise, consider the finite difference quotient approach to approximat-
ing sensitivities. Suppose the flow is determined at (x1, t1) for two values a1 and (a1+Da) of
the parameter. We approximate the flow sensitivity at (x1, t1) by

(Q(x1, t1; a1)
(a

:
Q(x1, t1; a1+Da)−Q(x1, t1; a1)

Da
.
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Figure 14. A shock wave in (x, a)-space. Flow variables are discontinuous when one crosses the shock wave xs(a) at
the point (xs(a0), a0) along either the horizontal or vertical dashed lines.

If the flow is smooth and Da is small, then both the numerator and the denominator are small,
and in fact, Da�0, both approach zero in such a way that their ratio converges to
(Q/(a(x1, t1; a1). Now, suppose that the points (x1, t1; a1+Da) and (x1, t ; a) in (x, t ; a)-space
lie on opposite sides of the shock wave as depicted in Figure 15; then, even if Da is small, the
numerator is relatively large. Hence, the solution of the finite difference sensitivity is large and
a spike occurs when differencing across a shock.

In the sensitivity equation approach, the same spikes develop. Again, suppose one parameter
a determines the flow so that Q=Q(x, t ; a). The equation for the sensitivity S=(Q/(a is

Figure 15. The points (x1, a1) and (x1, a1+Da) are on opposite sides of the shock wave in the (x, t0, a)-plane. The
variables at the two points differ significantly even if the two points are close together, i.e. even if Da is small.
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obtained by differentiating the flow equation with respect to a. In full detail, this process goes
as follows:
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(
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�(U
(t

+
(F(Q)
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(a (x

=
(

(t
�(Q
(a

�
+
(

(x
�(F(Q)
(a

�
=
(S
(t

+
(

(x
G(Q, S),

where the flux function G(Q, S) is defined by

G(Q, S)=
(F(Q)
(a

=
dF
dQ

(Q)S.

In this derivation, it is important to notice that the order of differentiation has been
interchanged. In smooth regions of the flow, there is no difficulty in interchanging derivatives;
however, at a shock wave the derivation is not allowable due to the non-existence of the
appropriate derivatives at that location. One cannot use the flux function G as defined above
or one should at least realize that the derivation has a certain amount of error built in and deal
with this in the numerical scheme.

It can also be seen that the same spikes arise in the ADIFOR automatic differentiation
sensitivities. These spikes arise using the automatic differentiation method because even though
the exact solution is discontinuous, the discrete solution is ‘continuous’, e.g. shock waves are
smeared out. Hence, ADIFOR has no problem differentiating the function and the result is
spikes in the neighbourhood of the discontinuity.

6.4.2. Flow sensiti6ities, contact discontinuities, and rarefaction wa6es. Contact discontinuities
are another source of error in the sensitivity calculations. Across a contact discontinuity, the
velocity u and the pressure p are continuous, while the density r, and hence other conserved
quantities, experience a jump discontinuity. Thus, for the conserved quantities, the same
problems arise as for shock waves and spikes are present in the sensitivities at a contact
discontinuity.

Unlike the case for shock waves and contact discontinuities, the flow field is continuous not
only within the rarefaction wave but also across its edges. However, the flow is not
differentiable across those edges. As a result, the flow sensitivities experience a jump disconti-
nuity at both edges of the rarefaction wave. Numerical schemes, even if they are designed to
do a good job capturing shock-type discontinuities, have difficulty capturing the essentially
different jumps in the sensitivities occurring at the edges of the rarefaction wave. This can be
clearly seen in the computational results.

7. SENSITIVITY-BASED OPTIMIZATION FOR THE REIMANN PROBLEM

We now examine, in the context of the Riemann problem, some issues directly related to flow
optimization. The example optimization problem considered is to match, as well as possible, at
a specified time t0, the flow to a desired flow by altering the initial conditions of the problem.
The initial conditions that can be altered are the pressure and density to the left and right of
the diaphragm. In this study, the single design parameter is chosen to be the initial left, or
high, pressure p4. The initial left density, the initial right pressure and the initial right density
are kept fixed throughout the optimization procedure. The cost functional is given by

J(Q)=
1
2
&

G
�Q(x, t0; p4)−Q. (x, t0)�2 dx,
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where Q. (x, t0) is the target flow, Q(t0; p4) is the candidate flow, and G is the computational
domain. In the cost functional, both the target and candidate flows have been evaluated at a
specific time t= t0. The flow matching optimization problem is then defined as follows:

Problem 1
Find the initial left pressure p4 such that J(Q) is minimized, where Q(x, t ; p4) is a solution of
the one-dimensional Euler equations.

The gradient of the functional is simply its derivative with respect to p4, i.e.

dJ

dp4

=
&

G
(Q(x, t0; p4)−Q. (x, t0)) ·

(Q(x, t0; p4)
(p4

dx.

The candidate flow for any value of the design parameter p4 must satisfy the one-dimensional
Euler equations.

In practice, one often actually minimizes a discrete approximation to the cost functional.
For example, the discrete functional

Jh(Qh)=
1
2

%
J

j=0

Dx �Qj
h(t0; p4)−Q. (xj, t0)�2

is obtained from J by a simple composite one-point quadrature rule. For the discrete
functional, G is subdivided into J intervals of equal length Dx ; Qj

h(t0; p4) denotes an
approximation to the exact flow Q(xj, t0; p4), where xj= jDx. The target flow Q. (xj, t0) is
assumed known and thus does not have to be approximated at the grid points. We then arrive
at the following discrete optimization problem:

Problem 2
Find the initial left pressure p4 such that Jh(Qh) is minimized, where Qh(x, t ; p4) is a solution
of an approximation to the flow equations.

The approximation Qh(x, t ; p4) can be determined by a favourite CFD algorithm. The gradient
of the discrete functional with respect to the design parameter p4 is given by

dJh

dp4

= %
J

j=0

Dx(Qj
h(t0; p4)−Q. (xj, t0))

(

(p4

Qj
h(t0; p4).

If the sensitivity of the approximate flow solution Qj
h(t0; p4) is determined exactly, as is the

case, in principle, for the automatic differentiation approach, then the gradient of the discrete
cost functional can also be determined exactly. In this sense, such an approach leads to a
‘consistent gradient’, i.e. it is the true gradient of the discrete functional. In fact, if one takes
the view, as is often done, that Problem 2 is the optimization problem one really wants to
solve, then we have the gradient one really wants. Thus, if the exact sensitivity of the
approximate flow is available, then, up to round-off error. Problem 2 can be solved exactly as
well; of course. Problem 1 is not solved exactly. The consistency of the gradient in the sense
discussed here is viewed by some as an important advantage of the discretize-then-differentiate
approach. However, in general, this does not mean that optimizations are without difficulties.

If one takes the differentiate-then-discretize approach, then one does not get a consistent
gradient. To see this, first consider the exact gradient; it can be approximated by�dJ

dp4

�h

= %
J

j=0

Dx(Qj
h(t0; p4)−Q. (xj, t0))

�(Q
(p4

�
j

h

(t0; p4),
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where ((Q/(p4)j
h denotes an approximation to the exact sensitivity ((Q/(p4) at the grid point

xj, which may be determined from a discretization of the sensitivity equation. A functional
gradient determined by the differentiate-then-discretize is not the true gradient of anything.
Furthermore, neither Problem 1 or 2 can be solved exactly by this approach. In this sense, the
differentiate-then-discretize approach yields ‘inconsistent gradients’. It is possible that this
inconsistency can cause difficulties in the solution of Problem 2; however, should they arise,
they are usually easy to overcome [11].

We do not have space here to report in detail about numerical experiments connected with
the Reimann flow optimization problem [5]. A brief summary of the results is as follows.
Optimization seems to be quite robust in the presence of the inaccuracies in sensitivities or
adjoints as discussed in the previous sections. Certainly the optimizers can quickly find the
position of singularities, e.g. shock waves, in the flow. The spikes indicate large sensitivities
near a shock wave or other discontinuities in the flow. However, it seems the accuracy of
sensitivities or adjoints does become important when the optimizer works hard as it attempts
to find the smooth part of the optimal flow. This is borne out in Reimann problem
experiments where we have seen that the performance of the optimizer iteration is improved if
one uses the exact sensitivities available for such problems and the presence of spikes, even
sharp ones, slow down the convergence.
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